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Abstract

This paper presents a robust model-based technique for the detection and diagnosis of gear faults under
varying load conditions using the gear motion residual signal. Since the majority of energy in the healthy
state of the gear of interest is concentrated at the meshing fundamental and its harmonics, the gear motion
residual signal, obtained by the removal of the regular gear meshing fundamental and its harmonics from
the time-synchronous average (TSA) signal, will be much less sensitive to the varying load conditions than
the TSA signal. Also, the gear motion residual signal usually shows evidence of faults earlier and more
clearly than the TSA signal. Therefore, less load dependence and an earlier indication of incipient faults can
be obtained simultaneously. A noise-adaptive Kalman filter-based auto-regressive (AR) model is fitted to
the gear motion residual signals in the healthy state of the gear of interest. By the selection of a proper
model order which provides a compromised model for the healthy gear under various load conditions with
the aid of a specific AR model order selection method proposed in this study, further enhancement in load
independence can be obtained in the AR model residuals. Consequently, a robust statistical measure, which
takes the percentage of outliers exceeding the three standard deviation limits of the baseline AR model
residuals, is applied to evaluate the state of the gear of interest. The proposed diagnostic model is validated
using full lifetime vibration signals of gearbox operating from new to breakdown under a variety of failure
modes and demonstrates remarkable advantages over other newly proposed techniques.
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1. Introduction

Online condition monitoring of gear transmission systems in industry has attracted increasing
interest in recent years, due to the need to decrease the downtime on production machinery
and to reduce the extent of the secondary damage caused by failures. Concerning time-domain
analyses, the technique of the time-synchronous averaging (TSA) providing a signal that
represents the average meshing vibration of one particular gear over a complete revolution
has been widely acknowledged as a powerful tool in the detection and diagnosis of gear
faults [1–3]. By means of this technique, one can effectively remove any periodic events not exactly
synchronous with the gear of interest and reduce the effects of background noise and vibration
sources other than the gear of interest. Another appealing processing technique is the extraction
of the residual signal by removing the regular gear meshing harmonics from the TSA
signal, resulting in a signal predominantly containing the portion that is caused by the gear
fault and geometrical irregularity. Apparently the residual signal possesses broadband features
due to the abrupt changes caused by localized gear faults and is more desirable for the early
detection of gear faults [2]. Currently, most gear fault diagnostic techniques are based upon the
gear motion residual signal [4–7]. The pioneering research that proposed the use of the residual
signal and the amplitude and phase wavelet maps for the detection of gear faults can be found in
Ref. [7].
In general, there are two classes of model-based approaches for condition monitoring of

rotating machinery available in the literature: (1) approaches based on parametric modeling such
as the one presented in this paper, and (2) flexible models using neural networks and fuzzy logics.
Samanta [8] investigated three types of artificial neural networks (ANNs): a multi-layer

perceptron (MLP), radial basis function network (RBF) and probabilistic neural network (PNN),
and applied genetic algorithm (GA) for the fault detection of a two-stage gear reduction unit.
However, it was pointed out that the retraining of the ANN-based approaches may be required
for a changed machine condition with different load.
Other contribution to this area include the papers by Chen and Wang [9], Staszewski et al. [6],

Paya et al. [10], Yang et al. [11], Mechefske [12], and Yen and Lin [13], among others.
For implementation of online condition monitoring techniques in practice, a single online state

indicator describing the physical condition of the gear of interest is most desirable to compress the
huge amount of vibration data and thus present a convenient means of trending the development
of gear condition [4]. Statistical measures of the residual signal, which include the root mean
square (RMS), change in the RMS (delta RMS), kurtosis [7,14], beta kurtosis [3], etc., are
frequently used for this purpose.
Generally speaking, a desirable online state parameter should predominantly satisfy the four

conditions: (1) being independent of the variation of load conditions; (2) being able to generate as
early as possible an alarm for an incipient fault; (3) indicating a correct description of the severity
of a fault state; (4) having low computational requirements.
Conventional vibration monitoring techniques are based on the assumption that changes in the

measured signals are caused by deterioration in the condition of the gearbox. However, this
assumption is not valid under varying load conditions which are frequently encountered in the
practical operation of rotating machinery. Consequently, to find a methodology to deal with
varying load conditions is of considerable practical value.
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There have been attempts in the recent research to develop a robust method satisfying some of
the four conditions. Stander et al. [15] considered various fault and load conditions and found
that the Mahalanobis distance could be used as a single parameter to indicate the progression of a
fault condition under fluctuating load conditions. However, this method was validated using
limited data picked up at a few specific inspections. The stability and effectiveness of this method
over the full lifetime horizon has not been investigated. However, such stability is a vital necessity
for online condition monitoring since instability of a state index may result in frequent false
alarms and at the same time blur the real indication of the incipient faults.
Roan et al. [16] proposed a single state parameter based on an information maximization-based

blind source separation algorithm which is able to find the localized damage of the gear of
interest. The authors stated that the approach is independent of load conditions. However, such a
state parameter cannot be employed by online maintenance decision models since it only
illustrates in two-dimensional learning curve plots the severity of the damaged region in
comparison with the remaining sound part within one entire revolution of the gear of interest but
does not provide a quantitative generalization index of the severity of the fault condition at each
inspection.
Baydar and Ball [17] showed that the instantaneous power spectrum can be used to detect local

gear faults under different nominal load conditions. This method is based on visual inspection of
time–frequency maps and thus a single state parameter can hardly be extracted.
The method developed by Parker et al. [18] possesses a remarkable advantage over the

preceding work in that it is independent of load conditions since bicoherence is insensitive to load
conditions. However, this method suffers from extensive computational requirements.
Alternative parametric modeling for online vibration monitoring can be established using time-

series techniques. An initial study addressing the time-series model-based state diagnostic
technique of a gearbox is found in Rantala and Suoranta [19] who proposed a technique which
examines the autoregressive (AR) model residuals. However, many key issues were left unsolved
in their study, in particular the development and performance analysis of the robust state index
under varying load conditions.
Advances in developing an AR model-based state diagnostic model for gearbox were made by

Wang and Wong [14] who also proposed a stationary AR model-based diagnostic approach which
is to some extent capable of detecting a gear tooth crack earlier than with conventional gear
motion residual kurtosis. However, this approach is still load-dependent and the applied state
index kurtosis is not reliable as mentioned before and will be further demonstrated in this study.
Our previous study [20] proposed an adaptive parametric model which is transformed from the

time-varying AR model and estimated by a noise-adaptive Kalman filter (NAKF). By associating
this model with a bispectral domain deterioration detection statistic of a gear, a robust diagnostic
technique, which is insensitive to the alternating of load conditions yet capable of quickly
indicating the occurrence of gear faults under varying load conditions, is proposed. However, this
method is computationally intensive and thus some simplifications must be performed in advance
in order to reduce the computational requirements.
In this paper, an efficient diagnostic technique will be proposed which consists of fitting an AR

model to gear motion residual signals and then takes advantage of the NAKF to decorrelate the
signal to produce a white Gaussian sequence (or AR model residuals). A statistical measure is
then applied to the AR model residuals to indicate the state of the gear of interest. The paper
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is organized as follows. Section 2 presents the description of the proposed diagnostic model.
Section 3 presents the experimental setup. Section 4 presents a comprehensive experimental
validation of the proposed method using full lifetime vibration data of a gearbox under various
fault conditions. Conclusions are drawn in Section 5.
2. Model description

2.1. Theoretical background

This development is motivated by recognition that the gear motion residual signal represents
the departures of the TSA from the average tooth-meshing vibration and usually shows evidence
of faults earlier and more clearly than the TSA signal. Thus, fault-induced non-stationary features
will be more significant in the gear motion residual signal, whereas the gear motion residual signal
is usually stationary in the healthy state of the gear of interest. Most importantly, since much of
the energy in the healthy state of the gear of interest is concentrated at the meshing fundamental
and its harmonics, the gear motion residual signal, obtained by the removal of the regular gear
meshing fundamental and its harmonics from the TSA signal, will be much less sensitive to
varying load conditions than the TSA signal. Therefore, earlier alarms for incipient faults and less
load dependence can be obtained simultaneously. This corroborates well with the requirements (1)
and (2) stated in Section 1.
Further, an NAKF-based AR model is fitted to the stationary gear motion residual signal

which corresponds to the initial healthy state of the gear of interest. The resulting AR model
coefficients will enable the model to give a consistent prediction for future stationary gear motion
residual signals of the same family but yield significant prediction errors for any part that is
outside such as fault-induced non-stationarity or any frequency component not contained in the
healthy state gear motion residual signal. Therefore, if the gear of interest remains in a healthy
state, its model residuals will only represent the prediction error. However, if a localized fault is
present, the prediction error will be more significant when the AR model established in the healthy
state of the gear of interest is applied.
Most importantly, by the selection of a proper model order for the healthy gear under various

load conditions, further enhancement in load-independence can be obtained in the AR model
residuals. Consequently, a robust statistical measure termed the model residuals-based machine
state deterioration parameter (MRP), which takes the percentage of outliers exceeding the
baseline three standard deviation limits can be applied to the AR model residuals to evaluate the
state of the gear of interest.
Fig. 1 illustrates in detail the diagram of the proposed model. The model order is determined by

selecting a number of gear motion residual signals from the initial period of each load condition
under the healthy state of the gear of interest. During the examination of each AR model order
candidate, a matrix of state (or time-varying AR model coefficients) vectors with each column
corresponding to each angular position (or phase) over the entire revolution of the gear of interest
will be obtained by applying the NAKF to the gear motion residual signal at the first inspection.
Since the phase information is unavailable in the tests, the mean state vector of this state matrix
should be calculated over angular horizon and used as a constant state vector to calculate AR
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Raw vibration data of healthy gearbox  

under varying load conditions 

TSA signals, i=1,…, N GMR signals, i=1,…, N

AR model order: p = lower limit of 
order selection range 

GMR signal of first inspection, i=1 

Time-varying AR model coefficients 
obtained with the aid of NAKF 

GMR signal at ith inspection, i=1…N

ARMRs of GMR signal at ith 
inspection, i=1,…, N 

The STD of ARMRs at the first 
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limits for calculating MRP of GMR 
signal at ith inspection, respectively, 

i=1,…, N

Calculation of MOSC for MRPs 
p = upper limit of order selection range 

p = p +1 

No

Analysis of MOSC for all tested orders and 
determination of the optimum one 

Using the GMR signal of first inspection to obtain 
time-varying AR model coefficients with NAKF 
under the determined optimum AR model order 

Calculation of ARMRs of GMR signal at each 
future inspection 

Calculation of MRP 

Proposed diagnostic model

Yes 

On-line maintenance decision for 
gearbox 

Fig. 1. Diagram of the proposed diagnostic model. Notations: TSA, time synchronous averaging; AR, autoregressive;

GMR, gear motion residual; NAKF, noise-adaptive Kalman filter; ARMRs, AR model residuals; STD, standard

deviation; MRP, AR model residuals-based gear state parameter; MOSC, model order selection criteria.
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model residuals throughout the entire revolution for every inspection performed during the full
lifetime of the gear of interest. By doing so, the phase information embedded in the state matrix is
lost. This usually would not invalidate the following analysis since the difference among the
columns of the state matrix estimated by using the healthy gear’s motion residual signals is
predominantly induced by the geometric irregularities of the gear of interest which is usually much
less significant than fault-induced effects.
The NAKF-based time-varying AR model will be presented in Section 2.2. A novel analytical

procedure will be proposed in Section 2.3 to provide a fairly reliable and convenient approach for
selecting the optimum AR model order.
2.2. Noise-adaptive Kalman filter

In this section, we present a state-space model transformed from the AR model with time-
dependent coefficients, and provide recursive algorithms for the implementation of the Kalman
filter. An AR process is a discrete-time multivariate linear stochastic process given by

yi ¼
Xp

k¼1

Akyi�k þ ei (1)

for i ¼ 1; 2; . . . ;N, that is, the time series can be considered as the output of a linear all-poles filter
driven by a white-noise signal with a flat spectrum, where N is the sample size, p the order of AR
model, yi the ith measurement vector of dimension d� 1, Ak the kth d� d coefficient matrix of the
measurement yi�k, and ei a d� 1 sequence of zero-mean white Gaussian measurement noise.
Considering the non-stationary property of vibration signatures, we assume the coefficient
matrices of the above AR model to be time-varying:

yi ¼
Xp

k¼1

AkðiÞyi�k þ ei. (2)

To make use of the Kalman filtering algorithm, it is necessary to develop a state-space
representation of model (2). This can be achieved by rearranging the elements of the matrices of
coefficients in a vector form using the vec-operator, which stacks the columns of a matrix on top
of each other from the left to right side. Then, with the following notation,

ai ¼ vecð½A1ðiÞ;A2ðiÞ . . . ;ApðiÞ�
TÞ, (3)

Y i ¼ ðy
T
i ; y

T
i�1; . . . ; y

T
i�pþ1Þ, (4)

Ci ¼ Id � YT
i (5)

an appropriate state-space representation of the AR model with stochastic coefficients can be
given by

aiþ1 ¼ f iðaiÞ þ ni, (6)

yi ¼ CT
i�1ai þ ei, (7)
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where ai is the pd2
� 1 state vector, ni is an pd2

� 1 sequence of zero-mean white Gaussian state
noise, uncorrelated with a1 and ei, ei is the same as in Eq. (1) and uncorrelated with a1 and ni, and
Eq. (7) has an adaptive time-varying coefficient CT

i�1 of dimension d � pd2. We also have
â0ð¼ Eða0ÞÞ, the Gaussian pd2

� 1 initial state vector with covariance matrix P0j0ð¼ Covða0ÞÞ, and
the noise covariance matrices

EfnknTi g ¼ Qkdk�i, (8)

EfekeTi g ¼ Rkdk�i, (9)

where T denotes transposition, d denotes the Kronecker delta sequence, Qk denotes the covariance
matrix of state noise and Rk denotes the covariance matrix of measurement noise. For convenient
implementation, â0 and P0j0 are arbitrarily chosen. Suppose that the evolution law of the state
vector ai is a random walk process which results in a state-space representation below instead of
Eqs. (6) and (7):

aiþ1 ¼ ai þ ni, (10)

yi ¼ CT
i�1ai þ ei. (11)

Thus, with the aid of a standard Kalman filter the recursive prediction equations

Piji�1 ¼ Pi�1ji�1 þQi�1, (12)

âiji�1 ¼ âi�1, (13)

where Piji�1 is the one-step ahead prediction of the state covariance matrix, Pi�1ji�1 is the
estimate (error) covariance matrix of the state vector, âiji�1 is the one-step ahead prediction
of the state vector, âi�1 is the optimal filtering estimate of the state vector ai�1 and updating
equations

Gi ¼ Piji�1Ci�1½C
T
i�1Piji�1Ci�1 þ R̂i�

�1, (14)

Piji ¼ ½I � GiC
T
i�1�Piji�1, (15)

âiji :¼ âi

¼ âiji�1 þ Giðyi � CT
i�1âiji�1Þ ð16Þ

can be obtained for i ¼ 1; 2; . . . ;N, where Gi is the Kalman gain and the covariance matrix Qi of
state noise is assumed to be known a priori. From the incoming measurement information yi and
the optimal state prediction âiji�1 obtained in the previous step, the innovations sequence is
defined as

zi :¼ yi � CT
i�1âiji�1, (17)

which leads to the estimate of Ri, using the i most recent residuals, given by

R̂i ¼
1

i � 1

Xi

k¼1

ðzk � z̄Þðzk � z̄ÞT, (18)
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where

z̄ ¼
1

i

Xi

k¼1

zk (19)

is the mean of the innovations up to the ith time instant. Note that the estimation approach (18)
requires the white Gaussian property of zi. Obviously, this property can be obtained if the Kalman
filter operates in its optimum state. Therefore, an adaptive Kalman filter for estimating the state
as well as the noise covariance matrices can be called a NAKF.

2.3. Model order selection criteria

Unlike the conventional model order selection procedure based on, say, Akaike information
criterion (AIC), the order selection criteria proposed in this section are oriented towards model
fitting with load-independent property under varying load conditions. Our extensive tests revealed
that model order is the predominant parameter of the NAKF-based time-varying AR model
resulting in notable variation of model performance under varying load conditions. In order to
select the optimum one, some statistical measures should be applied to evaluate the performance
of the MRP under a certain model order.
Let us assume that there are two different load conditions to be encountered during the lifetime

of a gearbox, which cover at least N and M inspections respectively, and thus result in two MRP
sequences under a certain model order p, MRP(p, i) and MRP(p, j) in correspondence with the
two load conditions respectively, where i ¼ 1; . . . ;N and j ¼ K þ 1; . . . ;K þM and KXN. Here,
we assume that the N þM inspections are carried out under the healthy state of the gear of
interest.
Then, the ratio between the mean of MRP(p, i) and the mean of MRP(p, j), expressed as

RðpÞ ¼

max
1

N

XN

i¼1

MRPðp; iÞ;
1

M

XKþM

j¼Kþ1

MRPðp; jÞ

( )

min
1

N

XN

i¼1

MRPðp; iÞ;
1

M

XKþM

j¼Kþ1

MRPðp; jÞ

( ) (20)

can be calculated, where it is assumed that we always assign numerator the larger mean of MRP
and denominator the smaller one. Thus R(p) is always larger than one given that the numerator
and denominator are not equal, we can then obtain the first statistical measure

M1ðpÞ ¼ RðpÞ � 1 (21)

which is positive and should be close to zero when the optimum model order is obtained.
Second, the performance of MRP is expected to be stable and does not present strong

variability. Therefore, the root mean square (RMS), as an index of variability, is employed to
characterize the dispersion among the MRPs and expressed as

sðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N þM � 1

XNþM

l¼1

MRPðp; lÞ �MRP
______

ðpÞ
� �2" #vuut , (22)
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where MRP(p, l) ¼MRP(p, i)[MRP(p, j), l ¼ 1,y,N+M, and MRP
______

ðpÞ is the mean of
MRP(p, l) under the order p, given by

MRP
______

ðpÞ ¼
1

N þM

XNþM

l¼1

MRPðp; lÞ. (23)

For consistency with M1(p) and the following notations, s(p) is replaced by M2(p), namely

M2ðpÞ ¼ sðpÞ. (24)

In principle, M2(p) should be the smallest under the optimum model order.
Third, the optimum model order should not give rise to significant outliers or abnormally

high values of MRP under the healthy state of the gear of interest. Therefore, the kurtosis
can be employed to measure the severity of abnormal outliers and gives the statistical measure
expressed as

M3ðpÞ ¼ kurtosisðMRPðp; lÞÞ. (25)

The kurtosis function is provided by MATLAB. The value of M3(p) should be close to or less than
three when the optimum model order is obtained. Here, values of M3(p) less than three are
acceptable since only values of kurtosis greater than three indicate the presence of abnormal
outliers [16].
Note that the above statistical measures, M1(p), M2(p) and M3(p), are global ones since they

take into account both load conditions. For local performance, we still need the same statistical
measures to evaluate the performance of the MRP under each load condition so as to obtain
acceptable local behavior of the MRP. In such a connection, the following four performance
measures are proposed:

M4ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

i¼1

MRPðp; iÞ �MRP
______

1ðpÞ
� �2" #vuut (26)

and

M5ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � 1

XKþM

j¼Kþ1

MRPðp; jÞ �MRP
______

2ðpÞ
� �2" #vuut (27)

are the RMS strengths of MRP(p, i) and MRP(p, j) respectively, where MRP
______

1ðpÞ and MRP
______

2ðpÞ
are the mean values of MRP(p, i) and MRP(p, j) under the first and second load conditions
and given by MRP1ðpÞ ¼ ð1=NÞ

PN
i¼1MRPðp; iÞ and MRP2ðpÞ ¼ ð1=MÞ

PKþM
j¼Kþ1MRPðp; jÞ, respec-

tively. Similar to M2(p), M4(p) and M5(p) should be the smallest under the optimum model order.
Furthermore,

M6ðpÞ ¼ kurtosisðMRPðp; iÞÞ (28)

and

M7ðpÞ ¼ kurtosisðMRPðp; jÞÞ (29)

are the kurtoses of MRP(p, i) and MRP(p, j) respectively. Similar to M3(p), the values of M6(p)
and M7(p) should be close to or less than three when the optimum model order is obtained.
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It is natural to think and also confirmed by our experiments that the three global statistical
measures of MRP, M1(p), M2(p) and M3(p), are the predominant criteria for selecting a model
order leading to load-independent model fitting, while the four local statistical measures, M4(p),
M5(p), M6(p) and M7(p), are the auxiliary ones. In case it is difficult to select the proper model
order using the global measures, the auxiliary ones should be examined. In the case of fewer
inspections available under a certain load condition, the corresponding local statistical measures
are less reliable and thus could be ignored. By means of these seven statistical measures together,
one can conveniently evaluate the performance of the MRP under a certain model order and thus
select the optimum one. In addition, it must be noted that, most of the time, the seven statistical
measures cannot simultaneously achieve their target values, therefore a compromised decision
must be made.
As well, in view of the multi-component nature of the gear motion residual signals, relatively

higher model orders are preferred. Our initial tests indicate that the range of [90,130] is sufficient
for selecting the optimum model order which results in load-independence.
3. Experimental validation

3.1. Experimental setup

A mechanical diagnostics test bed (MDTB) as shown in Fig. 2 was utilized in this study to
provide data on a commercial transmission as its health progresses from new to faulty and
finally to failure. The vibration data used in this study were obtained from the Applied
Research Laboratory at the Pennsylvania State University [21]. The MDTB is functionally a
motor-drive train-generator test stand [22]. The gearbox is driven at a fixed input speed using a
Fig. 2. Mechanical diagnostic test bed (MDTB).
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30 hp, 1750 rev/min AC drive motor, and the torque is applied by a 75 hp, 1750 rev/min AC
absorption motor. The maximum speed and torque are 3500 rev/min and 225 ft lb respectively.
The variation of the torque is accomplished by a vector unit capable of controlling the current
output of the absorption motor. The MDTB is highly efficient because the electrical power that is
generated by the absorber is fed back to the drive motor. The mechanical and electrical losses are
sustained by a small input power. The MDTB has the capability of testing single and double
reduction industrial gearboxes with ratios from about 1.2:1 to 6:1. The gearboxes are nominally in
the 5–20 hp range. The system is sized to provide the maximum versatility to speed and torque
settings. The motors provide about 2–5 times the rated torque of the selected gearboxes, and
thus the system can provide good overload capability. Torque-limiting clutches are used on both
sides of the gearbox to prevent the transmission of excessive torque as could occur with gear jam
or bearing seizure. In addition, torque cells are used on both sides of the gearbox to monitor
directly the efficiency and the loads transmitted [22]. The general gearbox information is shown in
Table 1.

3.2. Signal processing policy

The tests used in this study include TR#5, TR#8 and TR#10. The tests were conducted
with identical single reduction helical 1:1.5 ratio gearboxes which were run at 100%
output torque and power for 96 h then increased to 200% or 300% torque and power
for a number of hours until failure. In each test, there is a number of unequally spaced
inspections performed during the lifetime of each gearbox. Each inspection provides a data
file collected in 10-s windows at set times which cover 200,000 sampling points in total
and triggered by accelerometer RMS thresholds. The sampling frequency is 20 kHz. Table 2
gives a brief description of the alternating of load conditions for the three tests used in this
study.
Fig. 3 shows the locations of accelerometers. The single axis shear piezoelectric accelerometer

data A03 for the axial direction is selected in this study to investigate the performance of the
proposed model under different failure modes.
Table 1

Gearbox specification of tests TR#5, TR#8 and TR#10

Gearbox ID# DS3S0150XX

Make Dodge APG

Model R86001

Rated input speed 1750 rev/min

Maximum rated output torque 528 in lb

Maximum rated input hp 10.0

Gear ratio 1.533

Contact ratio 2.388

Gear mesh frequency of driven gear (Hz) 875.53

Gear mesh frequency of pinion gear (Hz) 874.99

Number of teeth (driven gear) 46

Number of teeth (pinion gear) 30
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Table 2

Load conditionsa

Condition Input speed (rev/min) Output torque (in lb) Power (hp) Duration (h)

#1 1750 540 9.8 96.0

#2 1750 1620/1080/1080 20/30/20 51.5/6/81.1

aNote: Output torque (in lb) 1620/1080/1080 denotes the loads for tests TR#5, TR#8 and TR#10, respectively. Same

for power (hp) and duration (h).

Fig. 3. Distribution of accelerometers.
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The proposed MRP will be compared with the fault-growth parameter (FGP) proposed by
Miller [23], AR model residual kurtosis and gear motion residual kurtosis. For convenience, the
abbreviations RMS1, RMS2, RMS3, MRK1 and MRK2 will be used to denote the RMS
strengths of AR model residuals, gear motion residual signals, TSA signals, AR model residual
kurtosis and gear motion residual kurtosis, respectively. Also, the three standard deviations of the
baseline AR model residuals, determined at the beginning of each test by using the gear motion
residual signal of the first inspection, is a constant throughout each test.
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4. Model evaluation

Three types of faults, two adjacent gear tooth failures, two non-adjacent gear tooth failures,
and distributed gear tooth failures, are investigated in this study. Unlike in the previous studies,
e.g. [7,10,11], the gear faults in this study were not intentionally created in advance. The gearbox
in each test was driven under varying load conditions until some abnormal values of the RMS and
kurtosis of the raw vibration signals were present. The MDTB was then shut down and the
gearbox was open by technicians to check the root cause which triggered the abnormal values of
these monitoring indexes. The gear of interest is always the driven gear since its failure was found
to be the only factor which caused the MDTB to shut down. In the present study, we investigate
the TR#5, TR#8 and TR#10 corresponding to the three types of faults mentioned above,
respectively. We note that the same classification of gear faults was used to investigate the MDTB
test runs in Refs. [16,23].

4.1. Two adjacent gear tooth failures (TR#5)

The gearbox in this test was driven until there was a break in two adjacent teeth of the driven
gear (see Fig. 4 for a photograph of the broken gear). There was a total of 83 data files collected
Fig. 4. Two adjacent gear tooth failures of the driven gear in test TR#5.
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during the lifetime of this test. The output torque level was 540 in lb before file 13 and switched to
1620 in-lb from file 13 as shown in Fig. 6(a).
For this test, 12 gear motion residual signals under the first load condition of 540 in lb and the

first 40 gear motion residual signals under the second load condition of 1620 in lb are used to
determine the optimum AR model order. The initial inspection of M1(p), M2(p) and M3(p) as
shown in Figs. 5(a), (b) and (c) respectively, indicates that the optimum AR model order could be
selected from 100, 110 and 117. In detail, Fig. 5(a) shows that the order of 110 gives the smallest
value of M1(p). Fig. 5(b) shows that the order of 100 is the best when using M2(p), and in Fig. 5(c),
both M3(100) and M3(110) are less than 3, but M3(117) gives a value of kurtosis, 3.818 which is
the largest among the kurtosis values of these three orders. Thus, the order of 117 is excluded.
Further examination of M6(p) and M7(p) in Figs. 5(f) and (g) shows no notable difference between
order 100 and 110, whereas M4(100) and M5(100) in Figs. 5(d) and (e) have smaller RMS values in
comparison with M4(110) and M5(110). Therefore, an AR(100) model is selected for this test.
In Figs. 6 and 7, the two vertical dashed lines in each subplot denote the switch of load

condition from data file 12 to 13. As shown in Figs. 6(b) and (c), both RMS1 and RMS2 indicate
that the time instant corresponding to the presence of incipient fault is around file 74.
Unfortunately, RMS3 as shown in Fig. 6(d) not only fails to reveal the occurrence time of the
incipient fault but shows a significant load-dependent variation around file 12. Moreover, load-
dependence is also observed in RMS2, as clearly shown around file 12 in Fig. 6(c). Therefore,
RMS1 shows the best performance when compared with RMS2 and RMS3.
Fig. 7 shows the comparison between the proposed MRP and other state parameters. As shown

in Fig. 7(a), the MRP level is very low between file 1 and 71, it is independent of varying load
conditions as indicated by the arrow mark, and there is no varying-load-induced jump at the
switch point of load condition indicated by the two vertical dashed lines. After the incipient fault
initiates around file 73, the MRP jumps to a higher level. We remark here that a justifiable
evaluation of the performance of FGP should not take into account condition #1 (540 in lb output
torque level) since the FGP could be highly load-dependent as shown in Fig. 7(b). Therefore,
correct diagnosis by the FGP should assess the state of the driven gear by checking the deviation
from the baseline pattern when the driven gear is in its healthy state under load condition #2.
Further, in view of the load-independence of the MRP, we evaluate its performance under the

healthy state of the driven gear by considering all data files before the occurrence of the incipient
fault. Thus, further investigation denotes that mean values of the MRP within file ranges [72,82]
and [1,71] are 1.799% and 0.1608%, respectively, which result in a ratio of 11.19. On the other
hand, the FGP shown in Fig. 7(b) demonstrates very serious load-dependent behavior and a
dramatic jump is clearly present as indicated by the arrow mark at the load switch point from file
12 to 13. Even though the FGP goes up quickly to a level higher than the MRP during the
intermediate and advanced faulty states within file range [72,82], 10.26% and 1.079%, i.e. mean
values of FGP within file ranges [72,82] and [13,71] respectively, resulting in a ratio of 9.510 which
is obviously less than the 11.19 of the MRP. Thus, this phenomenon implies that the fault-induced
feature embedded in the AR model residuals is further amplified in comparison with the
decomposed gear motion signal proposed by Wang and McFadden [1]. Additionally, considerable
variability is present in the traces of MRK1 and MRK2 as shown in Figs. 7(c) and (d),
respectively. Moreover, kurtosis values associated with the healthy state of the driven gear are
equal to or higher than the kurtosis values associated with the intermediate faulty state of the
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Fig. 6. Load condition, RMS1, RMS2 and RMS3 vs. data file of test TR#5. The two vertical dashed lines in subplots

(b), (c), and (d) denote the switch of load condition from data file 12 to 13. (a) Load condition (output torque); (b) RMS

of AR model residual signal (RMS1); (c) RMS of gear motion residual signal (RMS2); (d) RMS of TSA signal (RMS3).
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driven gear due to its strong sensitivity to outliers. This is inconsistent with the actual state
evolution of the driven gear. Further comparison reveals that MRK1 shows less variability than
MRK2 within file range [1,71]. The reason is that AR model residuals are much less load-
dependent in comparison with gear motion residual signals. Therefore, the proposed MRP
possesses remarkable advantages over the other three state parameters in this case.

4.2. Two non-adjacent gear tooth failures (TR#8)

The gearbox in this test was driven until there was a break in two non-adjacent teeth of the
driven gear (see Fig. 8 for a photograph of the broken gear). There is a total of 145 data files
Fig. 5. Statistical measures of MRP for model order selection of test TR#5: (a) Ratio-based M1(p) for two load

conditions, M1(100) ¼ 0.2600, M1(110) ¼ 0.1484, M1(117) ¼ 0.1654; (b) ratio-based M2(p) for two load conditions,

M2(100) ¼ 0.0304, M2(110) ¼ 0.3087, M2(117) ¼ 0.0516; (c) Kurtosis-based M3(p) for two load conditions,

M3(100) ¼ 2.4505, M3(110) ¼ 2.3905, M3(117) ¼ 3.8183; (d) RMS-based M4(p) for load condition #1,

M4(100) ¼ 0.0137, M4(110) ¼ 0.7059, M4(117) ¼ 0.0277; (e) RMS-based M5(p) for load condition #2,

M5(100) ¼ 0.0333, M5(110) ¼ 0.2578, M5(117) ¼ 0.0562; (f) Kurtosis-based M6(p) for load condition #1,

M6(100) ¼ 2.2560, M6(110) ¼ 1.9611, M6(117) ¼ 1.5913; (g) Kurtosis-based M7(p) for load condition #2,

M7(100) ¼ 2.2948, M7(110) ¼ 2.3852, M7(117) ¼ 3.6814.
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Fig. 7. MRP, FGP, MRK1 and MRK2 vs. data file of test TR#5. The two vertical dashed lines in each subplot denote

the switch of load condition from data file 12 to 13. (a) AR model residuals-based machine state deterioration

parameter (MRP), where the arrow line denotes the general trend of MRP; (b) fault growth parameter (FGP), where

the arrow mark denotes the load switch-induced jump of FGP; (c) AR model residual kurtosis (MRK1), where the

arrow curve denotes the general trend of MRK1; (d) gear motion residual kurtosis (MRK2), where the arrow curve

denotes the general trend of MRK2.
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collected during the lifetime of this test. The output torque level was 540 in lb before file 39 and
switched to 1080 in lb from file 39 as shown in Fig. 10(a).
For this test, the first 35 gear motion residual signals under the first load condition of 540 in lb

and the first 10 gear motion residual signals under the second load condition of 1080 in lb are
used to determine the optimum AR model order. The initial inspection of M1(p), M2(p) and M3(p)
as shown in Figs. 9(a), (b) and (c) respectively, indicates that the optimum AR model order
could be selected from 104, 105, 106, 107 and 120. In Fig. 9(a), order 120 gives the smallest M1(p)
value of 0.0130 and shows a remarkable advantage over the other four orders. In Fig. 9(b),
M2(120) is slightly larger than the smallest M2(106). In addition, in Fig. 9(e), M5(120) is not the
smallest but shows a value of 0.0724 which is very consistent with the value of M4(120)
equal to 0.0743. Such a fact implies that order 120 results in the same variability under
the two load conditions. The kurtosis-based measures M3(p), M6(p) and M7(p) as shown in
Figs. 9(c), (f) and (g) do not show notable difference among these five order values except that
M7(105) gives a relatively higher kurtosis value of 4.558. Therefore, an AR(120) model is selected
for this test.
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Fig. 8. Two non-adjacent gear tooth failures of the driven gear in test TR#8.
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In Figs. 10 and 11, the two vertical dashed lines in each subplot denote the switch of load
condition from data file 38 to 39. As shown in Figs. 10(b) and (c), RMS1 and RMS2 demonstrate
two very consistent descriptions of the state progression of the driven gear, from which the
occurrence time of the incipient fault can clearly be seen around file 54. However, RMS3 shows a
generally (but not monotonically) ascending trend with the increase of time, where the occurrence
time of incipient fault is rather ambiguous.
The proposed MRP shown in Fig. 11(a) agrees well with the FGP in Fig. 11(b) with respect to

the indication of the occurrence time of the incipient fault around file 54 which is also consistent
with the findings from RMS1 and RMS2 as shown in Figs. 10(b) and (c), respectively. However,
the MRP develops at a relatively constant level before file 54 when the driven gear is in its healthy
state and shows no load-dependent behavior at the load switch point denoted by the two vertical
dashed lines in Fig. 11(a), whereas there is an apparent indication of load-dependent variation in
the trace of the FGP at file 39 to 40 when the load is switched to 1080 in lb as indicated by the
arrow mark at the load switch point denoted by the two vertical dashed lines in Fig. 11(b). In
addition, comparing the scale values of ordinates in Fig. 11(a) of the MRP and Fig. 11(b) of the
FGP respectively, it can be found that the values of the MRP are much larger than those of the
FGP under the faulty state of gearbox within file range [54,145]. Further investigation reveals that
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means of the MRP within file ranges [54,145] and [1,53] are 11.47% and 0.2657%, respectively,
which result in a ratio of 33.12. On the other hand, the ratio obtained from file ranges [54,145]
and [39,53] of the FGP is 18.57 which is significantly less than 33.12. Therefore, the gear
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Fig. 10. Load condition, RMS1, RMS2 and RMS3 vs. data file of test TR#8. The two vertical dashed lines in subplots

(b), (c), and (d) denote the switch of load condition from data file 38 to 39. (a) Load condition (output torque); (b) RMS

of AR model residual signal (RMS1); (c) RMS of gear motion residual signal (RMS2); (d) RMS of TSA signal (RMS3).
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fault-induced feature is strongly enhanced by the MRP in comparison with the FGP. As shown in
Figs. 11(c) and (d), MRK1 and MRK2 yield indication of the incipient fault around file 59 as
indicated by the arrow marks which is somewhat later than those of the MRP and FGP. As well,
considerable variability is present in the traces of MRK1 and MRK2. Therefore, the MRP
presents the best description of the state development of the driven gear in this test.
Fig. 9. Statistical measures of MRP for model order selection of test TR#8. (a) Ratio-based M1(p) for two load

conditions, M1(104) ¼ 0.3503, M1(105) ¼ 0.1082, M1(106) ¼ 1.0388, M1(107) ¼ 0.6714, M1(120) ¼ 0.0130; (b) ratio-

based M2(p) for two load conditions, M2(104) ¼ 0.1178, M2(105) ¼ 0.1581, M2(106) ¼ 0.0658, M2(107) ¼ 0.1498,

M2(120) ¼ 0.0696; (c) Kurtosis-based M3(p) for two load conditions, M3(104) ¼ 2.8130, M3(105) ¼ 2.7091,

M3(106) ¼ 3.5365, M3(107) ¼ 3.4545, M3(120) ¼ 2.6903; (d) RMS-based M4(p) for load condition #1,

M4(104) ¼ 0.1570, M4(105) ¼ 0.1909, M4(106) ¼ 0.0844, M4(107) ¼ 0.1924, M4(120) ¼ 0.0743; (e) RMS-based M5(p)

for load condition #2, M5(104) ¼ 0.0387, M5(105) ¼ 0.1132, M5(106) ¼ 0.0252, M5(107) ¼ 0.0702, M5(120) ¼ 0.0724;

(f) Kurtosis-based M6(p) for load condition #1, M6(104) ¼ 2.6595, M6(105) ¼ 2.1253, M6(106) ¼ 2.5559,

M6(107) ¼ 2.5509, M6(120) ¼ 2.7659; (g) Kurtosis-based M7(p) for load condition #2, M7(104) ¼ 2.4681,

M7(105) ¼ 4.5576, M7(106) ¼ 2.9697, M7(107) ¼ 2.3241, M7(120) ¼ 2.3291.
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Fig. 11. MRP, FGP, MRK1 and MRK2 vs. data file of test TR#8. The two vertical dashed lines in each subplot denote

the switch of load condition from data file 38 to 39. (a) AR model residuals-based machine state deterioration

parameter (MRP), where the arrow line denotes the general trend of MRP; (b) fault growth parameter (FGP), where

the arrow mark denotes the load switch-induced jump of FGP; (c) AR model residual kurtosis (MRK1), where the

arrow mark denotes the first indication of incipient fault around data file 59; (d) gear motion residual kurtosis (MRK2),

where the arrow mark denotes the first indication of incipient fault around data file 59.
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4.3. Distributed gear tooth failures (TR#10)

The gearbox in this test was driven until there was a break in distributed teeth of the driven gear
(see Fig. 12 for a photograph of the broken gear). There is a total of 148 data files collected during
the lifetime of this test. The output torque level was 540 in lb before file 13 and switched to
1080 in lb from file 13 as shown in Fig. 14(a).
For this test, the first 10 gear motion residual signals under the first load condition of 540 in lb

and the first 10 gear motion residual signals under the second load condition of 1080 in lb are used
to determine the optimum AR model order. The initial inspection of M1(p), M2(p) and M3(p) as
shown in Figs. 13(a), (b) and (c) respectively, indicates that the optimum AR model order could
be selected from 97, 98, 99, 106 and 107. On examining Fig. 13(a), one can find that M1(97) and
M1(98) are the smallest two values, M1(99) and M1(106) are very close to each other, whereas
M1(107) gives the largest value. However, further inspection of the RMS-based M2(p) and M4(p)
as shown in Figs. 13(b) and (d) indicates that order 107 gives the smallest M2(p) and M4(p) among
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Fig. 12. Distributed gear tooth failures of the driven gear in test TR#10.
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the five orders. The RMS-based M5(p) as shown in Fig. 13(e) shows a very slight difference
between M5(106) and M5(107). As well, on examining the kurtosis-based M3(p), M6(p) and M7(p)
in Figs. 13(c), (f) and (g), no remarkable difference is present among the orders of 97, 98, 99 and
107. They all give kurtosis values close to 3, but the order of 106 results in a relatively higher
kurtosis, 4.890, in M3(p) as shown in Fig. 13(c). Therefore, considering the smallest variability of
the order of 107, an AR(107) model is selected for this test.
In Figs. 14 and 15, the two vertical dashed lines in each subplot denote the switch of load

condition from data file 12 to 13. As seen in Figs. 14(b) and (c), RMS1 and RMS2 yield very
similar descriptions of the state development of the driven gear. The occurrence time of the
incipient fault can be identified at file 38. However, RMS3 shown in Fig. 14(d) highlights
the existence of the fault much later than RMS1 and RMS2. The alarm can only be obtained at
file 140.
In this case, the proposed MRP as shown in Fig. 15(a) demonstrates remarkable advantages

over the FGP, MRK1 and MRK2. The trace of the MRP within file range [1, 37] shows no load-
dependent behavior under the healthy stage of gearbox as indicated by the arrow mark in
Fig. 15(a) and progress at a considerably higher level after file 38 when the incipient fault initiates.
As indicated by the scale values of the ordinate in Fig. 15(a), the MRP gives very high values
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which are usually larger than 10% and may be as high as 70% under the faulty state of the
gearbox within file range [38, 148]. However, as shown in Fig. 15(b), the FGP shows its values
mainly between 5% and 25%. Therefore, the gear fault-induced feature is again significantly
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Fig. 14. Load condition, RMS1, RMS2 and RMS3 vs. data file of test TR#10. The two vertical dashed lines in subplots

(b), (c), and (d) denote the switch of load condition from data file 12 to 13: (a) Load condition (output torque); (b) RMS

of AR model residual signal (RMS1); (c) RMS of gear motion residual signal (RMS2); (d) RMS of TSA signal (RMS3).
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enhanced in MRP. Following the same analysis as in the previous cases, the MRP in this
case yields a ratio of 28.01 which is larger than the ratio of 24.30 of the FGP. Thus, the fault-
induced feature is also improved in the AR model residuals as well as an efficient elimination
of load-dependent behavior which, however, is slightly present in the trace of the FGP after the
load condition is switched to 1080 in lb as shown by the arrow mark in Fig. 15(b). In addition,
MRK1 and MRK2 show dramatic decreases when the fault develops to its intermediate stage, for
Fig. 13. Statistical measures of MRP for model order selection of test TR#10: (a) ratio-based M1(p) for two load

conditions, M1(97) ¼ 0.2751, M1(98) ¼ 0.4105, M1(99) ¼ 0.6160, M1(106) ¼ 0.6118, M1(107) ¼ 0.8310; (b) ratio-based

M2(p) for two load conditions, M2(97) ¼ 1.1903, M2(98) ¼ 1.2771, M2(99) ¼ 1.1977, M2(106) ¼ 0.7758,

M2(107) ¼ 0.7051; (c) Kurtosis-based M3(p) for two load conditions, M3(97) ¼ 2.5509, M3(98) ¼ 2.0347,

M3(99) ¼ 2.8979, M3(106) ¼ 4.8896, M3(107) ¼ 3.4301; (d) RMS-based M4(p) for load condition #1,

M4(97) ¼ 2.5027, M4(98) ¼ 2.0062, M4(99) ¼ 1.4783, M4(106) ¼ 1.6361, M4(107) ¼ 0.9682; (e) RMS-based M5(p)

for load condition #2, M5(97) ¼ 0.8762, M5(98) ¼ 1.1181, M5(99) ¼ 1.0971, M5(106) ¼ 0.4151, M5(107) ¼ 0.5130; (f)

Kurtosis-based M6(p) for load condition #1, M6(97) ¼ 2.3735, M6(98) ¼ 1.8913, M6(99) ¼ 2.6992, M6(106) ¼ 2.8436,

M6(107) ¼ 2.3067; (g) Kurtosis-based M7(p) for load condition #2, M7(97) ¼ 2.0364, M7(98) ¼ 2.0634,

M7(99) ¼ 3.1509, M7(106) ¼ 2.3034, M7(107) ¼ 3.8856.
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Fig. 15. MRP, FGP, MRK1 and MRK2 vs. data file of test TR#10. The two vertical dashed lines in each subplot

denote the switch of load condition from data file 12 to 13: (a) AR model residuals-based machine state deterioration

parameter (MRP), where the arrow line denotes the general trend of MRP; (b) fault growth parameter (FGP), where

the arrow line denotes the general trend of FGP; (c) AR model residual kurtosis (MRK1), where the arrow mark

denotes the dramatic decrease of MRK1 at the intermediate fault stage; (d) gear motion residual kurtosis (MRK2),

where the arrow mark denotes the dramatic decrease of MRK2 at the intermediate fault stage.
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example, as indicated by the arrow marks in Figs. 15(c) and (d), and thus yield erroneous
indications of the stage of the driven gear, although the occurrence time of the incipient fault can
be identified around file 38 as shown in Figs. 15(c) and (d) respectively.
5. Conclusions

In this study, a highly efficient and robust state parameter extracted using adaptive AR
modeling is proposed for detecting state development of gearboxes under varying load conditions.
This technique is independent of load and able to yield a more reliable and stable measure of the
state of the gear of interest under varying load conditions, compared with other techniques
recently proposed in related studies.
In particular, it is worthwhile to point out that the NAKF-based AR model takes advantage of

the gear motion residual signal rather than the TSA signal and thus results in a method superior
to previous studies, e.g. [14], in two major aspects. First, the load-dependent feature is strongly
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attenuated. Second, fault-induced effects are greatly enhanced. Also, the computational
requirements are much lower than those in previous studies, e.g. [4,5,18,20], since it is not
necessary to compute either bispectra or time-frequency representations. Moreover, the proposed
MRP defined as the outlier percentage of AR model residuals overcomes two natural
disadvantages of the kurtosis-based MRK1 and MRK2. First, the MRP is not as sensitive as
kurtosis to a few residuals in the tails of the distribution and thus will not show violent
fluctuations especially under the healthy state of the gear of interest. Second, the MRP does not
show dramatic decreases when multiple gear teeth are involved in the intermediary or advanced
faulty state of the gear. Instead, it jumps to and progresses at a sufficiently high level when a fault
initiates. In general, the MRP possesses appealing stability in comparison with other recently
proposed techniques and thus will not cause false alarms for incipient faults.
The primary concern in the establishment of the AR model is the selection of a proper model

order. The predominant objective of order selection in this study is to obtain non-sensitivity of
AR model residuals to a variety of possible load conditions in the healthy state of the gear. This
should be of no difficulty since the gearbox can always be tested under a number of different load
conditions in its running-in period so as to determine a robust order value for future operation.
Naturally, the order selected under the consideration of two end load conditions in the healthy
state of the gear of interest should also be applicable to load conditions between the tested two
boundaries. Any unexpected load level beyond the upper load boundary could be regarded as an
abnormality and cause the machine to shut down. A specific and quantitative AR model order
selection method is proposed in this study to search for an order value leading to load-
independent model fitting.
Finally, we remark that the appealing efficiency of the proposed diagnostic model is gained by

the effective combination of gear motion residual signals, AR modeling with a robust order
selection and the statistical measure taking the percentage of outliers exceeding the baseline three
standard deviation limits. Alternative diagnostic models could be developed by making use of
decomposed gear motion signals [1], alternative advanced time series modeling, or more robust
statistical measures. To achieve load-independence under varying load conditions, developing a
generalized model order selection criterion which is able to summarize in an automated way the
seven statistical measures proposed in Section 2.3 could be attempted. In addition, according to
the information provided in the original MDTB data CDs, the driven gear was found to be the
only faulty component in the gearbox at the end of each test, thus giving no opportunity to
explore the performance of the proposed technique when several kinds of faults develop
simultaneously, say gear faults plus bearing faults and shaft unbalances. Further research
focusing on this issue could be attempted.
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